设P(x,y)
又2x-2y+1=0
y=x+1/2
所以:|PA|+|PB|=√{[(x+2)^2+(y-5)^2]+[(x-2)^2+(y-4)^2]}
=√{[(x+2)^2+(x-9/2)^2]+[(x-2)^2+(x-7/2)^2]}
=√(4x^2+4x-9x-4x-7x+4+81/4+4+49/4)
=√(4x^2-16x+8+65/2)
=√(4x^2-16x+16-16+8+65/2)
==√[4(x-2)^2+33/2]>=√66/2(当且仅当x=2,y=5/2时取等号)
|PA|+|PB|最小值为√66/2