令f(x)=ax²+bx+c
则f(x+1)+f(x-1)
=a(x+1)²+b(x+1)+c+a(x-1)²+b(x-1)+c
=2ax²+2bx+2a+2c
=2x²-4x+4
所以2a=2
2b=-4
2a+2c=4
a=1,b=-2,c=1
f(x)=x²-2x+1
令f(x)=ax²+bx+c
则f(x+1)+f(x-1)
=a(x+1)²+b(x+1)+c+a(x-1)²+b(x-1)+c
=2ax²+2bx+2a+2c
=2x²-4x+4
所以2a=2
2b=-4
2a+2c=4
a=1,b=-2,c=1
f(x)=x²-2x+1