设m*n矩阵A的秩R(A)=n-1,且K1,K2 是齐次方程AX=0的两个不同的解,则AX=O的通解为多少?
1个回答
k1+k2 可能为零向量
而 k1-k2 ≠ 0
故为基础解系
相关问题
.设A为n阶矩阵,秩(A)=n-1,,是齐次线性方程组Ax=0两个不同的解,则Ax=0的通解是
设A为n阶矩阵,且A的秩为n-1,m、n是两个不同的解,则Ax=0的通解为 ,
设a1,a2是n元齐次线性方程组AX=0的两个不同解向量,又已知R(A)=n-1,则AX=0的通解是?
设n阶方阵A的秩为n-1,η1,η2是非齐次线性方程组AX=β的两个解,则齐次线性方程组AX=0的通解可表示为?
设n元齐次方程组AX=0的系数矩阵的秩为r,则AX=0有非零解的充分必要条件是 A r=n B
非齐次方程的通解.已知B1,B2是Ax=b的两个不同的解,a1,a2是相应齐次方程组Ax=0的基础解系,k1,k2是任意
6.设n元非齐次线性方程组Ax=b的系数矩阵A的秩为n-1,a1,a2为该方程的两个解,
齐次线性方程组的通解问题设A是n阶矩阵,对于齐次线性方程组Ax=0,如r(A)=n-1,且代数余子式A11≠0,则Ax=
设矩阵A(m*n)的秩r(A)=n,则非齐次线性方程组Ax=b()
设n阶矩阵A的秩为n-2,α1,α2,α3是非齐次线性方程组Ax=b的三个线性无关的解,则Ax=b的通解为______.