1/(1+√3)+1/(√3+√5)+……+1/(√9+√11)
=(√3-1)/[(√3+1)(√3-1)]+(√5-√3)/[(√5+√3)(√5-√3)]+……+(√11-√9)/[(√11+√9)(√11-√9)]
=(√3-1)/2+(√5-√3)/2+……+(√11-√9)/2
=(√3-1+√5-√3+√7-√5+√9-√7+√11-√9)/2
=(√11-1)/2
1/(1+√3)+1/(√3+√5)+……+1/(√9+√11)
=(√3-1)/[(√3+1)(√3-1)]+(√5-√3)/[(√5+√3)(√5-√3)]+……+(√11-√9)/[(√11+√9)(√11-√9)]
=(√3-1)/2+(√5-√3)/2+……+(√11-√9)/2
=(√3-1+√5-√3+√7-√5+√9-√7+√11-√9)/2
=(√11-1)/2