已知等差数列{an}的前n项和为Sn,a3=3且S5-2a1=17,等比数列{bn}中,b1=a2,b2S3=6.

1个回答

  • 设{an}公差为d,设{bn}公比为q

    S5-2a1=5a1+10d-2a1

    =3a1+10d

    =3a1+6d+4d

    =3(a1+2d)+4d

    =3a3+4d

    =3×3+4d=17

    d=(17-3×3)/4=2

    an=a1+(n-1)d=a3+(n-3)d=3+2(n-3)=2n-3

    b1=a2=2×2-3=1

    b2S3=6 b2=6/S3=6/(3a2)=2/a2=2/1=2

    q=b2/b1=2/1=2

    bn=b1q^(n-1)=1×2^(n-1)=2^(n-1)

    cn=a(n+1)bn=[2(n+1)-3]×2^(n-1)=(2n-1)×2^(n-1)

    Tn=c1+c2+...+cn=1×1+3×2+5×2^2+...+(2n-1)×2^(n-1)

    2Tn=1×2+3×2^2+...+(2n-3)×2^(n-1)+(2n-1)×2^n

    Tn-2Tn=-Tn=1+2×2+2×2^2+...+2×2^(n-1)-(2n-1)×2^n

    =2[1+2+...+2^(n-1)] -(2n-1)×2^n -1

    =2×1×(2^n -1)/(2-1) -(2n-1)×2^n -1

    =(3-2n)×2^n -3

    Tn=(2n-3)×2^n +3