1.(1)x^2=(2t-1)x-c
x^2-(2t-1)x+c=0
△=4t^2-4t+1-4c≥0
根据韦达定理x1x2=c,x1+x2=2t-1
(x1)^2+(x2)^2
=(x1+x2)^2-2x1x2
=4t^2-4t+1-2c=t^2+2t-3
得3t^2-6t+4=2c
△=-2t^2+8t-7≥0
解得(4-根号2)/2≤t≤(4+根号2)/2
(2)3t^2-6t+4=2c
c=3(t-1)^2+1
因为(4-根号2)/2≤t
所以当t=(4-根号2)/2时,cmin=(11-6*根号2)/2
2.有.x=1,y=3时.