解题思路:数轴与绝对值结合,先根据绝对值的性质,判断出a,b,c的大致取值,再根据图形和已知等式确定原点位子.
C是AB的中点,则a+b=2c,
因而 ①,a+b-2c=0⇒|a+b-2c|=0,
②,a-2c=-b⇒|a-2c|=|-b|=|b|,
③,b-2c=-a⇒|b-2c|=|-a|=|a|,
所以,原式=|a+b|-|b|+|a|-0=0⇒|a+b|=|b|-|a|,
因为|a+b|>0⇒a,b异号,并且|b|>|a|,
就是|OB|>|OA|,因而点O在A,C之间.
故选A.
点评:
本题考点: 绝对值;数轴.
考点点评: 本题考查了数轴与绝对值结合.