已知等比数列an满足an>0,且a1an=2^(n+1),则log2a1+log2a2+log2a3+...log2a6
2个回答
曾碧则a1a6=a2a5=a3a5
而a1a6=2^(6+1)=2^7
所以原式=log2(a1a2a3a4a5a6)
=log2(2^7)²
=log2(2^21)
=21
相关问题
已知等比数列{an}满足an>0,n=1,2等,且a5*a(2n-5)=2^2n,则当n≥1时log2a1+log2a3
在等比数列{an}中,an>0,(n∈N+)且a3a6a9=8,则log2a2+log2a4+log2a6+log2a8
已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log13(a5+a7+a
已知数列{an}满足log3an+1=log3an+1(n∈N*),且a2+a4+a6=9,则log13(a5+a7+a
等比数列{an}中,an>0,a3a4=4,则log2a1+log2a2+…+log2a6值为( )
等比数列{an}中,an>0,a3a4=4,则log2a1+log2a2+…+log2a6值为( )
①等比数列an中,an>0,若a1*a5=32,则log∨2 a1+log∨2 a2+……+log∨2 a8=?
已知等比数列{an}满足an>0,n=1,2等,且a5*a(2n-5)=2的2n次方,则当n≥1时log2a1+log2
等比数列 Tn=log2a1+log2a2+…+log2an
已知正项等比数列{an}中 a2•a6=4,则log2a1+log2a2+…+log2a7=( )