连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度,
又由平行关系得,四边形RPQA为矩形,所以AQ=RP,
△BRP也是等腰直角三角行,即BR=PR,所以AQ=BR
由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ,
∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度,
所以△RDQ是等腰RT△.
连接AD,由△ABC为等腰直角三角形可得AD垂直AC,且AD=BD,∠DAQ=∠DBR=45度,
又由平行关系得,四边形RPQA为矩形,所以AQ=RP,
△BRP也是等腰直角三角行,即BR=PR,所以AQ=BR
由边角边,△BRD全等于△AQD,所以∠BDR=∠ADQ,DR=DQ,
∠RDQ=∠RDA+∠ADQ=∠RDA+∠BDR=90度,
所以△RDQ是等腰RT△.