立方差公式与立方和公式
x^3-y^3=(x-y)(x^2+xy+y^2)
x^3+y^3=(x+y)(x^2-xy+y^2)
相互转换的方法
x^3-(-y)^3=[x-(-y)]*[x^2+x*(-y)+(-y)^2]
==>> x^3+y^3=(x+y)(x^2-xy+y^2)
x^3+(-y)^3=[x+(-y)]*[x^2-x*(-y)+(-y)^2]
==>>x^3-y^3=(x-y)(x^2+xy+y^2)
立方差公式与立方和公式
x^3-y^3=(x-y)(x^2+xy+y^2)
x^3+y^3=(x+y)(x^2-xy+y^2)
相互转换的方法
x^3-(-y)^3=[x-(-y)]*[x^2+x*(-y)+(-y)^2]
==>> x^3+y^3=(x+y)(x^2-xy+y^2)
x^3+(-y)^3=[x+(-y)]*[x^2-x*(-y)+(-y)^2]
==>>x^3-y^3=(x-y)(x^2+xy+y^2)