求一道数学题的解题过程已知向量a=(1-cos x,2sin(x/2)),向量b=(1+cos x,2cos(x/2))

1个回答

  • (1)

    (向量a-向量b)={-2cos x,2sin(x/2)-2cos(x/2)}

    所以:│向量a-向量b│(即距离)=√{(2cos x)^2+[2sin(x/2)-2cos(x/2)]^2}=2√{(cos x)^2+[sin(x/2)-cos(x/2)]^2}=2√{(cos x)^2+[1-2sin(x/2)cos(x/2)]}=2√[(cos x)^2+(1-sin x)]

    所以f(x)=2+sin x-(1/4)*│向量a-向量b│^2

    =2+sin x-(cos x)^2-1+sin x

    =1-(cos x)^2+2sin x

    =(sin x)^2+2sin x

    (2)

    若函数f(x)和函数g(x)的图像关于原点对称,则点(x,y)关于原点的对称点为(-x,-y),设点(x,y)在g(x)上,则点(-x,-y)在f(x)上,所以:-y=[(sin-x)^2]+2sin-x

    =(sin x)^2-2sin x(因为sin-x=-sin x)

    所以y=-(sin x)^2+2sin x=g(x)

    (3)

    h(x)=g(x)-入f(x)+1

    =-(1+λ)(sin x)^2+(2-2λ)sin x+1

    =-(1+λ){(sin x)^2-[(2-2λ)/(1+λ)]sin x}+1

    =-(1+λ){{sin x-[(1-λ)/(1+λ)]}^2-[(1-λ)/(1+λ)]^2}+1

    因为h(x)在[-π/2,π/2]上是增函数,所以{sin x-[(1-λ)/(1+λ)]}^2在此区间上为减函数,所以sin x-[(1-λ)/(1+λ)]≤0因为sin x在[-π/2,π/2]的最大值为1,所以(1-λ)/(1+λ)≥1

    解得-1<λ≤0