lim(x→0) sin(x - 2)/(x² - 4)
= lim(x→0) sin(x - 2)/[(x - 2)(x + 2)]
= lim(x→0) sin(x - 2)/(x - 2) • lim(x→0) 1/(x + 2)
= 1 • 1/(0 + 2)
= 1/2
lim(x→+∞) [1 + 1/(3x)]
= 1 + lim(x→+∞) 1/(3x)
= 1 + 0
= 1
lim(x→+∞) (1 - 2x)^(1/x),知道公式lim(x→+∞) (1 + x)^(1/x) = 1
= lim(x→+∞) [1 + (-2x)]^[1/(-2x) • -2]
= { lim(x→+∞) [1 + (-2x)]^[1/(-2x)] }^(-2)
= (1)^lim(x→+∞) (-2)
= 1