如图,已知抛物线y=ax2-2ax+b与x轴交于A、B(3,0)两点,与y轴交于C,且OC=3OA,

1个回答

  • (1)抛物线y=ax^2-2ax+b的对称轴是x=1,与x轴交于B(3,0),A(-1,0),

    则y=a(x+1)(x-3),

    它与y轴交于C(0,-3a),由OC=3OA=3,

    ∴a=土1,

    ∴抛物线的解析式是y=x^2-2x-3,或y=-x^2+2x+3.

    (2)对于抛物线y=x^2-2x-3,C(0,-3),其顶点D为(1,-4),设P(p,p^2-2p-3),p>1,

    △PDC为等腰三角形,分3种情况:

    1)PD=CD,p=2,P(2,-3);

    2)PC=PD,p^2+(p^2-2p)^2=(p-1)^2+(p^2-2p+1)^2,

    2p-1=2p^2-4p+1,2p^2-6p+2=0,p^2-3p+1=0,p>1,

    ∴p=(3+√5)/2,P((3+√5)/2,(-5+√5)/2);

    3)CP=CD,p^2+(p^2-2p)^2=2,

    p^4-4p^3+5p^2-2=0,

    (p-1)(p^3-3p^2+2p+2)=0,无大于1的根.

    对于抛物线y=-x^2+2x+3,留给您练习.可以吗?