解题思路:(Ⅰ)当a=1,x∈[1,e]化简f(x),然后研究函数f(x)在[1,e]的单调性,从而求出函数f(x)的最大值;
(Ⅱ)讨论x与e的大小去掉绝对值,然后分类讨论讨论导数符号研究函数在[1,+∞)的单调性,从而求出函数f(x)的最小值,使f(x)的最小值恒大于等于[3a/2],求出a的取值范围;
(Ⅲ)根据(II)的分类讨论求出函数g(x)的最小值,使g(x)的最小值恒小于等于f(x)的最小值,从而求出a的取值范围.
(Ⅰ)当a=1,x∈[1,e]时f(x)=x2-lnx+1,f′(x)=2x−
1
x≥f′(1)=1,
所以f(x)在[1,e]递增,所以f(x)max=f(e)=e2(4分)
(Ⅱ)①当x≥e时,f(x)=x2+alnx-a,f'(x)=2x+[a/x],a>0,∴f(x)>0恒成立,
∴f(x)在[e,+∞)上增函数,故当x=e时,ymin=f(e)=e2(5分)
②当1≤x<e时,f(x)=x2-alnx+a,f'(x)=2x-[a/x]=[2/x](x+
a
2)(x-
a
2),
(i)当
a
2≤1即0<a≤2时,f'(x)在x∈(1,e)时为正数,所以f(x)在区间[1,e)上为增函数,
故当x=1时,ymin=1+a,且此时f(1)<f(e)=e2(7分)
(ii)当1<
a
2<e,即2<a<2e2时,f'(x)在x∈(1,
a
2)时为负数,在间x∈(
点评:
本题考点: 函数的最值及其几何意义;对数函数图象与性质的综合应用.
考点点评: 本题主要考查了函数的最值及其几何意义,以及分类讨论的思想,解题的关键是对于恒成立的理解,是一道综合题.