1*3*5+2*6*10+3*9*15+…50*150*250/2*4*6+4*8*12+6*12*18+…100*200*300
= [1*3*5 * (1 + 2^3 + ...+ 50^3)]/[2*4*6 * (1 + 2^3 + ...+ 50^3)] (前后抵消)
= (1*3*5)/(2*4*6)
= 5/16
1*3*5+2*6*10+3*9*15+…50*150*250/2*4*6+4*8*12+6*12*18+…100*200*300
= [1*3*5 * (1 + 2^3 + ...+ 50^3)]/[2*4*6 * (1 + 2^3 + ...+ 50^3)] (前后抵消)
= (1*3*5)/(2*4*6)
= 5/16