因为 AB=BA
所以 (AB)^T=B^TA^T=BA=AB
所以 AB 是对称矩阵.
由A,B正定, 存在可逆矩阵P,Q使 A=P^TP,B=Q^TQ.
故 AB = P^TPQ^TQ
而 QABQ^-1=QP^TPQ^T = (PQ)^T(PQ) 正定, 且与AB相似
故 AB 正定.
因为 AB=BA
所以 (AB)^T=B^TA^T=BA=AB
所以 AB 是对称矩阵.
由A,B正定, 存在可逆矩阵P,Q使 A=P^TP,B=Q^TQ.
故 AB = P^TPQ^TQ
而 QABQ^-1=QP^TPQ^T = (PQ)^T(PQ) 正定, 且与AB相似
故 AB 正定.