令a=x³,b=y³,c=z³.
因为 x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-yz-zx)
=(x+y+z)[(x-y)²+(y-z)²+(z-x)²]/2≥0,
所以 x³+y^³+z³≥3xyz,
即 a+b+c≥3(abc)^(1/3).
令a=x³,b=y³,c=z³.
因为 x³+y³+z³-3xyz=(x+y+z)(x²+y²+z²-xy-yz-zx)
=(x+y+z)[(x-y)²+(y-z)²+(z-x)²]/2≥0,
所以 x³+y^³+z³≥3xyz,
即 a+b+c≥3(abc)^(1/3).