解题思路:(1)先根据直线y1求出点A的坐标,再代入直线y2的解析式进行计算即可得解;
(2)直线y1、直线y1分别与直线y=x联立求出点C、B的坐标,过点B作BF⊥x轴于F,过点C作CE⊥x轴于E,然后根据△ABC的面积=梯形BCEF的面积-△ACE的面积-△ABF的面积,列式进行计算即可得解.
(1)令y=0,则2x-6=0,
解得x=3,
所以,点A(3,0),
把点A的坐标代入y2=-ax+6得,-3a+6=0,
解得a=2;
(2)联立
y=x
y=2x-6,
解得
x=6
y=6,
所以,点C(6,6),
联立
y=x
y=-2x+6,
解得
x=2
y=2,
所以,点B(2,2),
如图,过点B作BF⊥x轴于F,过点C作CE⊥x轴于E,
则△ABC的面积=[1/2](2+6)×(6-2)-[1/2]×(3-2)×2-[1/2]×(6-3)×6,
=16-1-9,
=16-10,
=6.
点评:
本题考点: 两条直线相交或平行问题.
考点点评: 本题考查了两直线相交的问题,直线与坐标轴的交点的求解方法,联立两直线解析式求交点坐标,(2)把三角形的面积利用拼接法求解是解题的关键,可以使计算更加简便,作出图形更形象直观.