(2008•虹口区一模)(1)已知:f(x)=4x2−12x−32x+1,x∈[0,1],求函数f(x)的单调区间和值域

1个回答

  • (1)y=f(x)=2x+1+

    4

    2x+1−8,设t=2x+1,1≤t≤3

    则y=t+

    4

    t−8,t∈[1,3].

    任取t1、t2∈[1,3],且t1<t2,f(t1)−f(t2)=

    (t1−t2)(t1t2−4)

    t1t2,

    当1≤t≤2,即0≤x≤

    1

    2时,f(x)单调递减;

    当2<t≤3,即

    1

    2<x≤1时,f(x)单调递增.

    由f(0)=−3,f(

    1

    2)=−4,f(1)=−

    11

    3,得f(x)的值域为[-4,-3].

    (2)设x1、x2∈[0,1],且x1<x2

    则g(x1)-g(x2)=(x1-x2)(x12+x1x2+x22-3a2)>0,

    所以g(x)单调递减.

    (3)由g(x)的值域为:1-3a2-2a=g(1)≤g(x)≤g(0)=-2a,

    所以满足题设仅需:1-3a2-2a≤-4≤-3≤-2a,

    解得,1≤a≤

    3

    2.