(1)y=f(x)=2x+1+
4
2x+1−8,设t=2x+1,1≤t≤3
则y=t+
4
t−8,t∈[1,3].
任取t1、t2∈[1,3],且t1<t2,f(t1)−f(t2)=
(t1−t2)(t1t2−4)
t1t2,
当1≤t≤2,即0≤x≤
1
2时,f(x)单调递减;
当2<t≤3,即
1
2<x≤1时,f(x)单调递增.
由f(0)=−3,f(
1
2)=−4,f(1)=−
11
3,得f(x)的值域为[-4,-3].
(2)设x1、x2∈[0,1],且x1<x2,
则g(x1)-g(x2)=(x1-x2)(x12+x1x2+x22-3a2)>0,
所以g(x)单调递减.
(3)由g(x)的值域为:1-3a2-2a=g(1)≤g(x)≤g(0)=-2a,
所以满足题设仅需:1-3a2-2a≤-4≤-3≤-2a,
解得,1≤a≤
3
2.