1.a√(ab)=√a^2*√(ab)=a^2*√[a^2*(ab)]
=√(a^3b)
2.(a+b)√(a+b)=√(a+b)^2*√(a+b)=√[(a+b)^2*(a+b)]=√(a+b)^3
3.√[(x^2+y^2)^2-(x^2-y^2)^2]
=√{[(x^2+y^2)+(x^2-y^2)]*[(x^2+y^2)-(x^2-y^2)]}
=√(2x^2*2y^2)
=正负2xy
1.a√(ab)=√a^2*√(ab)=a^2*√[a^2*(ab)]
=√(a^3b)
2.(a+b)√(a+b)=√(a+b)^2*√(a+b)=√[(a+b)^2*(a+b)]=√(a+b)^3
3.√[(x^2+y^2)^2-(x^2-y^2)^2]
=√{[(x^2+y^2)+(x^2-y^2)]*[(x^2+y^2)-(x^2-y^2)]}
=√(2x^2*2y^2)
=正负2xy