已知函数g(x)=lnx+ax 2 +bx.(a,b∈R)

1个回答

  • (1)∵关于x的不等式1+lnx>g(x)的解集为(-∞,1)∪(2,+∞),

    ∴ax 2+bx-1<0的解集为(-∞,1)∪(2,+∞),

    则a<0,1+2=

    b

    a , 1×2=-

    1

    a ,

    ∴ a=-

    1

    2 , b=

    3

    2 ,

    ∴b-a=2;

    (2)∵f(x)=g(x)-x=lnx+ax 2,(a∈R),

    ∴f′(x)=

    1

    x +2ax=

    2 ax 2 +1

    x ,

    当a≥0时,f′(x)≥0恒成立,f(x)在(0,+∞)单调递增,无极值,

    当a<0时,f′(x)=

    1

    x +2ax=

    2 ax 2 +1

    x =0,x=

    -

    1

    2a (x>0).

    当x∈(0,

    -

    1

    2a ),f′(x)≥0,

    当x∈(

    -

    1

    2a ,+∞),f′(x)<0,

    ∴f(x)在(0,

    -

    1

    2a )单调递增,在(

    -

    1

    2a ,+∞)单调递减.

    (3)若a=b=1,假设存在这样的两点P(x 1,y 1),Q(x 2,y 2),(其中x 1≥e 2x 2),

    中点C的横坐标 x 0=

    x 1 + x 2

    2 ,

    ∴ g′(x)=

    1

    x +2x+1 ,

    ∵PQ的斜率等于曲线在其上一点C(点C的横坐标等于PQ中点的横坐标)处的切线的斜率,

    ∴ g′( x 0 )=

    1

    x 0 +2 x 0 +1 =

    y 1 - y 2

    x 1 - x 2 =

    ln x 1 +

    x 21 + x 1 -(ln x 2

    +x 22 + x 2 )

    x 1 - x 2 ,

    1

    x 0 +2 x 0 +1 =

    ln

    x 1

    x 2 +( x 1 - x 2 )( x 1 + x 2 )+( x 1 - x 2 )

    x 1 - x 2 =

    ln

    x 1

    x 2

    x 1 - x 2 +( x 1 + x 2 )+1 ,

    1

    x 0 +2 x 0 +1 =

    ln

    x 1

    x 2

    x 1 - x 2 +2 x 0 +1 ,

    2

    x 1 + x 2 =

    ln

    x 1

    x 2

    x 1 - x 2 ,

    2( x 1 - x 2 )

    x 1 + x 2 = ln

    x 1

    x 2 ,∴

    2(

    x 1

    x 2 -1)

    x 1

    x 2 +1 = ln

    x 1

    x 2 ,

    令t=

    x 1

    x 2 ,

    ∵ x 1 ≥ e 2 x 2 ,即t≥e 2,∴

    2(t-1)

    t+1 =lnt,∴lnt≥2,

    2(t-1)

    t+1 =2-

    2

    t+1 <2 ,

    ∴方程

    2(t-1)

    t+1 =lnt,t≥e 2,无解,

    即满足条件的两点P,Q不存在.