(1)∵关于x的不等式1+lnx>g(x)的解集为(-∞,1)∪(2,+∞),
∴ax 2+bx-1<0的解集为(-∞,1)∪(2,+∞),
则a<0,1+2=
b
a , 1×2=-
1
a ,
∴ a=-
1
2 , b=
3
2 ,
∴b-a=2;
(2)∵f(x)=g(x)-x=lnx+ax 2,(a∈R),
∴f′(x)=
1
x +2ax=
2 ax 2 +1
x ,
当a≥0时,f′(x)≥0恒成立,f(x)在(0,+∞)单调递增,无极值,
当a<0时,f′(x)=
1
x +2ax=
2 ax 2 +1
x =0,x=
-
1
2a (x>0).
当x∈(0,
-
1
2a ),f′(x)≥0,
当x∈(
-
1
2a ,+∞),f′(x)<0,
∴f(x)在(0,
-
1
2a )单调递增,在(
-
1
2a ,+∞)单调递减.
(3)若a=b=1,假设存在这样的两点P(x 1,y 1),Q(x 2,y 2),(其中x 1≥e 2x 2),
中点C的横坐标 x 0=
x 1 + x 2
2 ,
∴ g′(x)=
1
x +2x+1 ,
∵PQ的斜率等于曲线在其上一点C(点C的横坐标等于PQ中点的横坐标)处的切线的斜率,
∴ g′( x 0 )=
1
x 0 +2 x 0 +1 =
y 1 - y 2
x 1 - x 2 =
ln x 1 +
x 21 + x 1 -(ln x 2
+x 22 + x 2 )
x 1 - x 2 ,
即
1
x 0 +2 x 0 +1 =
ln
x 1
x 2 +( x 1 - x 2 )( x 1 + x 2 )+( x 1 - x 2 )
x 1 - x 2 =
ln
x 1
x 2
x 1 - x 2 +( x 1 + x 2 )+1 ,
∴
1
x 0 +2 x 0 +1 =
ln
x 1
x 2
x 1 - x 2 +2 x 0 +1 ,
2
x 1 + x 2 =
ln
x 1
x 2
x 1 - x 2 ,
∴
2( x 1 - x 2 )
x 1 + x 2 = ln
x 1
x 2 ,∴
2(
x 1
x 2 -1)
x 1
x 2 +1 = ln
x 1
x 2 ,
令t=
x 1
x 2 ,
∵ x 1 ≥ e 2 x 2 ,即t≥e 2,∴
2(t-1)
t+1 =lnt,∴lnt≥2,
又
2(t-1)
t+1 =2-
2
t+1 <2 ,
∴方程
2(t-1)
t+1 =lnt,t≥e 2,无解,
即满足条件的两点P,Q不存在.