a + b + c + d = 8
a + 2c = 3b
b + 2d = 3c
c + 2a = 3d
d + 2b = 3a
由上4个式子可知,a,b,c,d任意交换位置等式仍然成立,既有a = b = c = d
又由于a + b + c + d = 8
故 a = b = c = d = 2
即有:
a + 2b = 6
3c + 4d = 14
a + b + c + d = 8
a + 2c = 3b
b + 2d = 3c
c + 2a = 3d
d + 2b = 3a
由上4个式子可知,a,b,c,d任意交换位置等式仍然成立,既有a = b = c = d
又由于a + b + c + d = 8
故 a = b = c = d = 2
即有:
a + 2b = 6
3c + 4d = 14