1.n>1,
3Sn^2=An(3Sn -1)
An=Sn-S(n-1)下标
3Sn^2=(3Sn -1)[Sn-S(n-1)]=3Sn^2-3SnS(n-1)-Sn+S(n-1)
3SnS(n-1)=S(n-1)-Sn
[S(n-1)-Sn]/[SnS(n-1)]=3
1/Sn - 1/S(n-1) = 3
1/Sn=1+3(n-1)=3n-2
当n=1时也满足.
所以{1/Sn}为等差数列
2.bn=Sn/3n+1=1/[(3n-2)(3n+1)]=(1/3)[1/(3n-2) - 1/(3n+1)]
3Tn=(1-1/4)+(1/4-1/7)+(1/7-1/10)+.+[1/(3n-2) - 1/(3n+1)]
=1- 1/(3n+1)=3n/(3n+1)
Tn=n/(3n+1)