证明:
在BC上截取BE=BD,连接DE
∵BD+AD=BC
BE+CE=BC
∴AD=CE
在BC上截取BF=AB,连接DF
∵BD平分∠B
∴∠ABD=∠FBD
又∵BD=BD
∴⊿ABD≌⊿FBD(SAS)
∴AD=DF=CE
∠BFD=∠A
∵BD=BE,∠DBE=½∠B=20º
∴∠BED=80º,∠CDE=80º-∠C
∠DFE=180º-∠A=∠ABC+∠C=40º+∠C
∵CE/DE=sin∠CDE/sin∠C=sin(80º-C)/sinC【sin∠C简写为sinC】
DF/DE=sin∠BED/sin∠DFE=sin80º/sin(40º+C)
∵CE/DE=DF/DE
∴sin(80º-C)/sinC=sin80º/sin(40º+C)
化简:
sin(80º-C)×sin(40º+C)=sin80º×sinC
(sin80ºcosC-cos80ºsinC)×(sin40ºcosC+cos40ºsinC)=sin80ºsinC
sin40ºsin80ºcos²C+sin80ºcos40ºsinCcosC-cos80ºsin40ºsinCcosC-cos40ºcos80ºsin²C
=sin80ºsinC
sin40ºsin80º(1-sin²C)-cos40ºcos80ºsin²C+sinCcosC(sin80ºcos40º-cos80ºsin40º)
=sin80ºsinC
sin40ºsin80º-sin²C(sin40ºsin80º+cos40ºcos80º)+sin40ºsinCcosC=sin80ºsinC
sin40ºsin80º-cos40ºsin²C+sin40ºsinCcosC-sin80ºsinC=0
sin80º(sin40º-sinC)+sinC(sin40ºcosC-cos40ºsinC)=0
sin80º(sin40º-sinC)+sinCsin(40º-C)=0
∵ 0<C<140º
当C<40º时,sin40º-sinC>0,sin(40º-C)>0,等式不成立
当40º<C<140º时,sin40º-sinC<0,sin(40º-C)<0,等式也不成立
当C=40º时,等式成立
∴∠C=∠ABC=40º
∴AB=AC