设弦的两个端点为A(x1,y1),B(x2,y2),
∴
x12
4+
y12
3=1,
x22
4+
y22
3=1,两式相减得
(x1+x2)(x1−x2)
4+
(y1+y2)(y1−y2)
3=0,
∴
y1−y2
x1−x2=−
3
4•
x1+x2
y1+y2,①
又∵M(-1,1)为AB的中点,
∴x1+x2=-2,y1+y2=2代入①式得
y1−y2
x1−x2=
3
4,即kAB=[3/4],
∴直线AB方程为y−1=
3
4(x+1),即3x-4y+7=0.
故选A
设弦的两个端点为A(x1,y1),B(x2,y2),
∴
x12
4+
y12
3=1,
x22
4+
y22
3=1,两式相减得
(x1+x2)(x1−x2)
4+
(y1+y2)(y1−y2)
3=0,
∴
y1−y2
x1−x2=−
3
4•
x1+x2
y1+y2,①
又∵M(-1,1)为AB的中点,
∴x1+x2=-2,y1+y2=2代入①式得
y1−y2
x1−x2=
3
4,即kAB=[3/4],
∴直线AB方程为y−1=
3
4(x+1),即3x-4y+7=0.
故选A