证明恒等式,1+sin4θ-cos4θ/2tanθ=1+sin4θ+cos4θ/1-tan²θ..

1个回答

  • 1+sin4θ-cos4θ/2tanθ=1+sin4θ+cos4θ/1-tan²θ.

    (1+sin4θ-cos4θ)/(1+sin4θ+cos4θ)=2tanθ/1-tan²θ.

    (1-cos4θ+2sin2θcos2θ)/(1+cos4θ+2sin2θcos2θ)=tan2θ;

    (sin²2θ+cos²2θ-cos²2θ+sin²2θ+2sin2θcos2θ)/(sin²2θ+cos²2θ+cos²2θ-sin²2θ+2sin2θcos2θ)=tan2θ;

    2sin2θ(sin2θ+cos2θ)/2cos2θ(sin2θ+cos2θ)=tan2θ;

    2sin2θ/2cos2θ=tan2θ;

    tan2θ=tan2θ;

    所以得证

    很高兴为您解答,skyhunter002为您答疑解惑

    如果本题有什么不明白可以追问,