答:
f(x)=√3sinxcosx-sin²(x+π/2)+1/2
=√3sinxcosx-cos²x+1/2
=√3sinxcosx-(1/2)(2cos²x-1)
=(√3/2)sin2x-(1/2)cos2x
=sin(2x-π/6)
(1)
f(x)的最小正周期T=2π/2=π
对称轴中线满足f(x)=sin(2x-π/6)=0
2x-π/6=kπ
x=kπ/2+π/12,k∈Z
所以:对称中心为(kπ/2+π/12,0)
(2)
-π/2
答:
f(x)=√3sinxcosx-sin²(x+π/2)+1/2
=√3sinxcosx-cos²x+1/2
=√3sinxcosx-(1/2)(2cos²x-1)
=(√3/2)sin2x-(1/2)cos2x
=sin(2x-π/6)
(1)
f(x)的最小正周期T=2π/2=π
对称轴中线满足f(x)=sin(2x-π/6)=0
2x-π/6=kπ
x=kπ/2+π/12,k∈Z
所以:对称中心为(kπ/2+π/12,0)
(2)
-π/2