1/sin10°-√3/cos10°
=(cos10°-√3sin10°)/sin10°cos10°
=2*(1/2cos10°-√3/2sin10°)/[1/2(2sin10°cos10°)]
=2*(sin30°cos10°-cos30°sin10°)/(1/2sin20°)
=2*2*sin(30°-10°)/sin20°
=4sin20°/sin20°
=4
公式:sin(a-b)=sinacosb-cosasinb sin2a=2sinacosa
1/sin10°-√3/cos10°
=(cos10°-√3sin10°)/sin10°cos10°
=2*(1/2cos10°-√3/2sin10°)/[1/2(2sin10°cos10°)]
=2*(sin30°cos10°-cos30°sin10°)/(1/2sin20°)
=2*2*sin(30°-10°)/sin20°
=4sin20°/sin20°
=4
公式:sin(a-b)=sinacosb-cosasinb sin2a=2sinacosa