∵a>b,∴A>B.
作∠BAD=B交边BC于点D.
设BD=x,则AD=x,DC=5-x.
在ΔADC中,注意cos∠DAC=cos(A-B)=31/32,由余弦定理得:
(5-x)^2=x^2+4^2-2x*4*31/32,
即:25-10x=16-(31/4)x,
解得:x=4.
AC=AD=BD=4 过A做BC垂线AE BE=9/2 AE=根63/2
AB=6 sinB=AE/AB=根63/2/6=根7/4
∵a>b,∴A>B.
作∠BAD=B交边BC于点D.
设BD=x,则AD=x,DC=5-x.
在ΔADC中,注意cos∠DAC=cos(A-B)=31/32,由余弦定理得:
(5-x)^2=x^2+4^2-2x*4*31/32,
即:25-10x=16-(31/4)x,
解得:x=4.
AC=AD=BD=4 过A做BC垂线AE BE=9/2 AE=根63/2
AB=6 sinB=AE/AB=根63/2/6=根7/4