已知关于x的方程(m²-2)x²-2(m+1)x+1=0有两个不相等的实数根,求m的取值范围
Δ=b^2-4ac
=[2(m+1)]^2-4*(m^2-2)*1
=[2m+2]^2-4m^2+8
=4m^2+8m+4-4m^2+8
=8m+12
因为方程有两个不相等的实数根,
所以8m+12>0解得m
已知关于x的方程(m²-2)x²-2(m+1)x+1=0有两个不相等的实数根,求m的取值范围
Δ=b^2-4ac
=[2(m+1)]^2-4*(m^2-2)*1
=[2m+2]^2-4m^2+8
=4m^2+8m+4-4m^2+8
=8m+12
因为方程有两个不相等的实数根,
所以8m+12>0解得m