04年考研有一题:A,B为满足AB=0的两个非零矩阵,求A,B的行向量列向量线性相关的问题
1个回答
这样也可以
估计解答中是为了利用 AB=0 得出 A的列线性相关, 由 B^TA^T=0 得B^T的列线性相关
实际上由 AmsBsn=0 有 r(A)+r(B) 0, r(B)>0
得 r(A)
相关问题
设AB为满足AB=0的任意非零矩阵,则有 a.A的列向量组线性相关,B的行向量组线性相关 b.A的列向量组线性相关,B的
问一道矩阵的问题设A,B为满足AB=0的任意两个非零矩阵,则必有(A)A的列向量组线性相关,B的行向量组线性相关.(B)
如果两个非零矩阵AB=0,则A的列向量组线性相关,B的行向量组线性相关,
证明,设A,B为满足AB=0的任意两个非零矩阵,则必有 (A)A的列向量组线性相关,B的行向量组线性相关.
一道线代矩阵基础题设两个非零矩阵A,B,满足AB=0,则必有:A的列向量组线性相关.麻烦解释下.
设A和B是非零矩阵,满足AB=0,则B的行向量线性相关.这个怎么证明?
设Amxn,Bnxs,A不等于0,B不等于0,且AB=0,那么A的列向量线性相关,B的行向量线性相关.
线性代数——矩阵已知A为mxn矩阵,B为nxm矩阵,且AB=E,则()A.A的行向量组线性无关,B的列向量组线性无关B.
线性代数问题:方程组AX=0有非零解的充分必要条件是 (A) 系数矩阵行向量线性无关 (B) 系数
线性代数3设A为m*n的非零矩阵,方程Ax=0存在非零解的充分必要条件是( )(A) A的行向量线性无关 (B) A的行