mn=1/[ana(n+1)]=1/[(2n-1)*(2n+1)]=
1/2[1/(2n-1)-1/(2n+1)]
m1=1/2(1-1/3) m2=1/2(1/3-1/5)
Tn=1/2(1-1/3)+1/2(1/3-1/5)+.+1/2*[1/(2n-3)-1/(2n-1)]+1/[(2n-1)*(2n+1)]
=1/2[1-1/3+1/3-1/5+.+1/(2n-3)-1/(2n-3)+1/(2n-1)-1/(2n-1)+1/(2n+1)]
=1/2*1/(2n+1)
mn=1/[ana(n+1)]=1/[(2n-1)*(2n+1)]=
1/2[1/(2n-1)-1/(2n+1)]
m1=1/2(1-1/3) m2=1/2(1/3-1/5)
Tn=1/2(1-1/3)+1/2(1/3-1/5)+.+1/2*[1/(2n-3)-1/(2n-1)]+1/[(2n-1)*(2n+1)]
=1/2[1-1/3+1/3-1/5+.+1/(2n-3)-1/(2n-3)+1/(2n-1)-1/(2n-1)+1/(2n+1)]
=1/2*1/(2n+1)