△y=f(x0+△x)-f(△x)≈f'(x0)*△x,
x0=0,△x=-0.05,
f(0)=1,
y0=1,
e^(-0.05)=y0+△y=e^(0)+e^(0)*△x≈1+1*(-0.05)=0.95.
2、y=√(1-x^2),
S=∫[0,1]√(1-x^2)dx,
令x=sint,dx=costdt,
原式=∫[0,π/2] (cost)^2dt
=(1/4)∫[0,π/2](1+cos2t)d2t
=(1/4)(2t+sin2t)
=π/4.
3、定义域,x∈(0,+∞),
f'(x)=1/x》0,单调递增区间为x∈(0,+∞),
f"(x)=-1/x^2