AE=AD/sin∠E=AB/sin2∠B
而AC=ABtan∠B,DE=ADcot∠E=ABcot2∠B
∴DE+AC=AB(sinB/cosB+cos2B/sin2B)
=AB(2sin²B/sin2B+cos2B/sin2B)
=AB(2sin²B+1-2sin²B)/sin2B
=AB/sin2B=AE
AE=AD/sin∠E=AB/sin2∠B
而AC=ABtan∠B,DE=ADcot∠E=ABcot2∠B
∴DE+AC=AB(sinB/cosB+cos2B/sin2B)
=AB(2sin²B/sin2B+cos2B/sin2B)
=AB(2sin²B+1-2sin²B)/sin2B
=AB/sin2B=AE