f(x)=log(2)(4x)*log(2)(2x)=(logx+2)(logx+1) (logx表示以2为底的x的对数)
=(logx)²+3logx+2=(logx+3/2)²-1/4
因为1/4≤x≤4所以-2≤logx≤2
于是f(x)min=-1/4 此时logx+3/2=0解得x=√2/4
又f(4)=log16*log8=12 f(1/4)=log1*log(1/2)=-1
f(x)max=f(4)=12 此时x=4
f(x)=log(2)(4x)*log(2)(2x)=(logx+2)(logx+1) (logx表示以2为底的x的对数)
=(logx)²+3logx+2=(logx+3/2)²-1/4
因为1/4≤x≤4所以-2≤logx≤2
于是f(x)min=-1/4 此时logx+3/2=0解得x=√2/4
又f(4)=log16*log8=12 f(1/4)=log1*log(1/2)=-1
f(x)max=f(4)=12 此时x=4