α,β∈(0,π)
tan(α-β) = 1/2>0,tanβ=-1/7<0
α-β(0,π/2),β(π/2,π)
tanα = tan{(α-β)+β}
= {tan(α-β)+tanβ}/{1-tan(α-β)tanβ}
= (1/2-1/7)/(1+1/2*1/7)
= (7-2)/(14+1)
= 1/3>0
∵α-β(0,π/2),β(π/2,π)
∴α∈(π,3π/2)
2α-β∈(3π/2,2π)
tan(2α-β) = tan{α+(α-β)}
= { tanα+tan(α-β) } / { 1- tanαtan(α-β) }
= (1/3+1/2)/(1-1/3*1/2)
= (2+3)/(1-2*3)
= -1<0
2α-β = 7π/4