f(xy)=f(x)+f(y),
f(x)=f(x)+f(1)
f(1)=0
f(3*1/3)=f(1)=f(3)+f(1/3)=0
f(3)=-1
f(1/9*3)=f(1/3)=f(1/9)+f(3)=1
f(1/9)=2
f(x)+f(2-x)=f(x*(2-x))1/9
(3-2√2)/3
f(xy)=f(x)+f(y),
f(x)=f(x)+f(1)
f(1)=0
f(3*1/3)=f(1)=f(3)+f(1/3)=0
f(3)=-1
f(1/9*3)=f(1/3)=f(1/9)+f(3)=1
f(1/9)=2
f(x)+f(2-x)=f(x*(2-x))1/9
(3-2√2)/3