令g(x)=f(x)sinx,则g(0)=g(π)=0,所以根据罗尔定理,存在ξ属于(0,π),使得g'(ξ)=0,而g'(x)=f'(x)sinx+f(x)cosx,代人即得要证明的等式.
设f(x)在[0.π]上连续,(0,π)内可导 证明存在
1个回答
相关问题
-
一道高数证明题设f(x)在[0,π]上连续,在(0,π)内可导,求证存在ξ∈(0,π),使f'(ξ)=-f(ξ)cotξ
-
设f(x)在[0,π/2]上连续,在(0,π/2)内可导,且f(π/2)=0,试证存在一点ζ∈(0,π/2)使f(ζ)+
-
设f(x)在[0,x]上连续,在(0,x)内可导,且f(0)=0,证明:存在ξ∈(0,x),使得f(x)=(1+ξ)f’
-
一道证明题设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=f(1)=0,证明存在t属于(0,1),使f'(
-
一道高数零点问题的证明设f(x)在[0,π]上连续,∫0πf(x)sinxdx =∫0πf(x)cosxdx = 0.试
-
设f(x)在【0,1】上连续.证明∫(π/2~0)f(cosx)dx=∫(π/2~0)f(sinx)dx
-
设f(x)在【0,a】上连续,在(0,a)内可导,且f(0)=f(a),求证:存在 ζ∈(0
-
设f(x)在[0,1]上连续,在(0,1)内可导,且f(0)=0,f(1)=1,证明存在ξ∈(0,1),使得f(ξ)=1
-
证明函数恒等式设f(x)在〔0,+∞)上连续,在(0,+∞)内可导且满足f(0)=0,f(x)≥0,f(x )≥f‘(x
-
设f(x)在[0a]上连续,在(0a)内可导,且f'(a)=0,证明存在一点ξ满足f(ξ)+ξ f'(ξ)=0