(1)该函数在(0,√a]上是减函数,在[√a,+∞)上是增函数
说明函数最小值在x=√a取到,y(min) = 2√a
y=x+b^2/x
a = b^2
2√a = 2√(b^2) = 2b = 6
所以b=3
(2)令z = x^2
则函数y=z+c/z在 c属于(0,√c)上是减函数,在z属于(√c,+∞)上是增函数
则函数 y = x^2+c/x^2在 x^2属于(0,√c)上是减函数,在x^2属于(√c,+∞)上是增函数
即 则函数 y = x^2+c/x^2在 x属于[-4次根号下c,0)上是增函数,在x属于(0,4次根号下c]上是减函数,在x属于(-∞,-4次根号下c]上是减函数,在x属于[4次根号下c,+∞)上是增函数
(3) y = x^n +d/x^n (d>0,n是正整数)
如果n为奇数
函数在(-∞,2n次根号下d]上是增函数,在 〔-2n次根号下d,0)上是减函数,(0,2n次根号下d]上是减函数,在[2n次根号下d,+∞)上是增函数
如果n为偶数
函数在(-∞,2n次根号下d]上是减函数,在 〔-2n次根号下d,0)上是增函数,(0,2n次根号下d]上是减函数,在[2n次根号下d,+∞)上是增函数