设x1,x2属于R,且x1<x2
则f(x1)-f(x2)
=x1^3-x2^3
=(x1-x2)(x1^2+x1x2+x2^2)
=(x1-x2)(x1^2+x1x2+1/4x2^2+3/4x2^2)
=(x1-x2)[(x1+1/2x2)^2+3/4x2^2]
由x1<x2
则x1-x2<0
又由[(x1+1/2x2)^2+3/4x2^2]>0
故(x1-x2)[(x1+1/2x2)^2+3/4x2^2]<0
即f(x1)-f(x2)<0
故y=x³-b在R上是增函数
设x1,x2属于R,且x1<x2
则f(x1)-f(x2)
=x1^3-x2^3
=(x1-x2)(x1^2+x1x2+x2^2)
=(x1-x2)(x1^2+x1x2+1/4x2^2+3/4x2^2)
=(x1-x2)[(x1+1/2x2)^2+3/4x2^2]
由x1<x2
则x1-x2<0
又由[(x1+1/2x2)^2+3/4x2^2]>0
故(x1-x2)[(x1+1/2x2)^2+3/4x2^2]<0
即f(x1)-f(x2)<0
故y=x³-b在R上是增函数