正弦定理 S=absinC/2
余弦定理 c^2=a^2+b^2-2abcosC
代入2S=(a+b)^2-c^2
得absinC=2ab+2abcosC
sinC=2+2cosC
因为(sinC)^2+(cosC)^2=1
得cosC=-3/5 sinC=4/5 tanC=-4/3
或cosC=-1 sinC=0 舍去
正弦定理 S=absinC/2
余弦定理 c^2=a^2+b^2-2abcosC
代入2S=(a+b)^2-c^2
得absinC=2ab+2abcosC
sinC=2+2cosC
因为(sinC)^2+(cosC)^2=1
得cosC=-3/5 sinC=4/5 tanC=-4/3
或cosC=-1 sinC=0 舍去