1、因为a+b≥2√(ab),即1-ab≥2√(ab);
设√(ab)=T,得1-T²≥2T,即T²+2T-1≤0,即0≤T≤√(2)-1;
所以ab≤3-2√(2);
所以a+b≥2√(2)-2;
所以a+b的最小值是:2√(2)-2;ab的最大值是:3-2√(2).
2、带入c=-(a+b)到求证式的ab+c(a+b)=ab-(a+b)²=-(a²+b²+ab)
所以易知-(a²+b²+ab)=-[(a+b/2)²+3*b²/4]≤0.
所以原式得证.
1、因为a+b≥2√(ab),即1-ab≥2√(ab);
设√(ab)=T,得1-T²≥2T,即T²+2T-1≤0,即0≤T≤√(2)-1;
所以ab≤3-2√(2);
所以a+b≥2√(2)-2;
所以a+b的最小值是:2√(2)-2;ab的最大值是:3-2√(2).
2、带入c=-(a+b)到求证式的ab+c(a+b)=ab-(a+b)²=-(a²+b²+ab)
所以易知-(a²+b²+ab)=-[(a+b/2)²+3*b²/4]≤0.
所以原式得证.