解题思路:(1)由正方体的性质可得AD1⊥A1D,①A1B1⊥AD1②,结合①②根据直线与平面垂直的判定定理可证AD1⊥平面A1B1CD
(2)由(1)可知AO为平面A1B1CD的垂线,连接B1O,故可得∠AB1O即为所求的角,在直角三角形AB1O中求解即可
(1)AD1⊥平面A1B1CD.
证明:∵在正方体ABCD-A1B1C1D1中,A1B1⊥AD1,
AD1⊥A1D,A1D∩A1B1=A1,
∴AD1⊥平面A1B1CD.
(2)连接B1O.∵AD1⊥平面A1B1CD于点O,
∴直线B1O是直线AB1在平面A1B1CD上的射影.
∴∠AB1O为直线AB1与平面A1B1CD所成的角.
又∵AB1=2AO,
∴sin∠AB1O=
AO
AB1=
1
2.
∴∠AB1O=30°.
点评:
本题考点: 直线与平面垂直的判定;直线与平面所成的角.
考点点评: 本题主要考查了直线与平面垂直的判定定理的运用,“线线垂直”与“线面垂直”的相互转化,还考查了直线与平面所成角,及考生的空间想象能力.