解题思路:连接AD,根据直角三角形的性质和等腰三角形的性质得出AD=BD,∠FAD=∠B=45°,求出∠ADF=∠EDB,证△ADF≌△BDE,根据全等三角形的性质推出即可.
证明:连接AD,
∵在△ABC中,∠BAC=90°,AB=AC,D为BC的中点,
∴AD=BD,∠B=∠C=∠CAD=∠BAD=45°,AD⊥BC,
∴∠ADB=∠EDF=90°,
∴∠ADF=∠EDB=90°-∠ADE,
在△ADF和△BDE中,
∠FAD=∠B
AD=BD
∠ADF=∠EDB
∴△ADF≌△BDE(ASA),
∴DE=DF.
点评:
本题考点: 全等三角形的判定与性质.
考点点评: 本题考查了等腰三角形的性质,全等三角形的性质和判定,直角三角形斜边上中线的性质的应用,主要考查学生运用性质进行推理的能力.