[(a+r)y-t(x+r)][(a-r)y-t(x-r)]+s(x^2+y^2-r^2)=0表示的是一条2次曲线,经过四点P,Q,A1,A2.其中s是一个参数,你想像s越大,这个曲线越像圆,s越小,这个曲线越像一个X形.
[(a+r)y-t(x+r)][(a-r)y-t(x-r)]+s(x^2+y^2-r^2)=0
[(a^2-r^2)y^2+t^2(x^2-r^2)-2ty(ax-r^2)]+s(x^2+y^2-r^2)=0
让s=-t^2对上式子的作用是
[(a^2-r^2-t^2)y-2t(ax-r^2)]y=0
变成了两条直线,还是一个X形.
一条是y=0,就是直线A1,A2.
另一条是(a^2-r^2-t^2)y-2t(ax-r^2)=0不是A1,A2.所以只能是PQ.
题目背景为纯几何题目,如果你会一点射影几何,答案可以看出来,设PQ的过顶点为W.直线l是这个W的极线.W是l的极点.说白了就是A1,A2可以是圆上随便的2点,PQ依然会过定点W.W由l完全确定.