函数f(x)满足f(x+y)+f(x-y)=2f(x)·f(y),其定义域为R,求证f(x)为偶函数(f(x)≠0).
2个回答
令x=0,则f(x)+f(x)=2f(x)·f(0),所以f(0)=1.
令y=0,则f(y)+f(-y)=2f(y)·f(0),所以f(y)+f(-y)=2f(y),即f(y)=f(-y),得证.
相关问题
单调函数f(X)满足f(X+Y)=f(X)+f(Y),且f(1)=2,其定义域为R.
单调函数f(x)满足f(x+y)=f(x)+f(y),且f(1)=2,其定义域为R
定义域为r的单调函数f(x)满足f(x+y)=f(x)+f(y),且f(1)=2,求证f(x)为奇函数
定义域在R上的函数满足f(x+y)+f(x-y)=2f(x)f(y) f(0)≠0 f(1/2)=0 求证f(x)为偶函
设函数f(x)定义域为R,对一切x,y属于R,均满足f(x+y)+f(x-y)=2f(x)cosy,求证f(x)为周期函
f(x)定义域为R,对任意x,y属于R有f(x+y)+f(x-y)=2f(x)f(y),且f(0)不等于0求证:f(0)
定义域在R上的函数满足f(x+y)+f(x-y)=2f(x)f(y) f(0)≠0 f(1/2)=0 求:f(x)为偶函
设函数f(x)满足f(x+y)=f(x)+f(y)(x,y∈R),求证:
已知f(x)的定义域为R,对任意x,y∈R,有f(x+y)+f(x-y)=2f(x)f(y),且f(0)≠0.求证:y=
已知函数f(x)其定义域为R,且在定义域内为偶函数,若f(1-x)=f(1+x),求证:y=f(x)为周期函数