设b(n)=a(n)+1/2
化简为b(n+1)=(2k+1)b(n)+2(k(k+1)(b[n]^2-1/4))^1/2
移项开方化简为
b(n+1)^2-2(2k+1)b(n)b(n+1)+b(n)^2+k(k+1)=0
易知
b(n+1)+b(n-1)=2(2k+1)b(n)
反带a(n)=b(n)-1/2
得a(n+1)+a(n-1)=2(2k+1)a(n)-2k
因为a1=0 a2=k
所以
a[n]属于N
设b(n)=a(n)+1/2
化简为b(n+1)=(2k+1)b(n)+2(k(k+1)(b[n]^2-1/4))^1/2
移项开方化简为
b(n+1)^2-2(2k+1)b(n)b(n+1)+b(n)^2+k(k+1)=0
易知
b(n+1)+b(n-1)=2(2k+1)b(n)
反带a(n)=b(n)-1/2
得a(n+1)+a(n-1)=2(2k+1)a(n)-2k
因为a1=0 a2=k
所以
a[n]属于N