已知二次函数y1=ax2+bx+c的图象经过一次函数y2=-[3/2]x+3的图象与x轴、y轴的交点,且经过点(1,1)

1个回答

  • 解题思路:(1)由题意先设出二次函数的解析式:y=ax2+bx+c,一次函数y=-[3/2]x+3的图象与x轴、y轴的交点在二次函数图象上,分别令一次函数x=0,y=0求出其与x轴、y轴的交点,再根据点(1,1)也在二次函数图象上,把三点代入二次函数的解析式,用待定系数法求出二次函数的解析式.

    (2)把y=[1/2]x2-[5/2]x+3化成顶点式即可;

    (1)由y=-[3/2]x+3的图象与x轴、y轴的交点,并且经过点(1,1),

    令x=0,得y=3;

    令y=0,得x=2

    ∴二次函数图象经过(0,3),(2,0),(1,1)三点,

    把(0,3),(2,0),(1,1)分别代入y=ax2+bx+c,

    c=3

    4a+2b+c=0

    a+b+c=1,

    解得

    a=

    1

    2

    b=−

    5

    2

    c=3

    ∴所求二次函数关系式为y=[1/2]x2-[5/2]x+3.

    (2)由y=[1/2]x2-[5/2]x+3

    =[1/2](x2-5x)+3

    =[1/2](x-[5/2])2-[1/8],

    故用配方法把解析式化成y=a(x-h)2+k的形式为:y=[1/2](x-[5/2])2-[1/8];

    点评:

    本题考点: 待定系数法求二次函数解析式;一次函数图象上点的坐标特征;二次函数的三种形式.

    考点点评: 此题主要考查一次函数和二次函数的基本性质,一次函数与x轴、y轴的交点坐标,用待定系数法求出二次函数的解析式,把一般式化成顶点式;