解题思路:(1)甲射击5次,中靶次数k服从二项分布,根据二项分布的方差计算公式Dξ甲=5p1(1-p1),即可求得p1,根据[1/p1]•[1/p2]=6,可求得p2的值;
(2)两人各射击2次,中靶至少3次就算完成目的,分两种情况讨论,共击中3次的概率,根据n次独立重复实验事件A恰好发生k的概率公式,代入即可求得结果;同理可求出击中4次的概率,这两种情况互斥,根据概率的加法公式即可求得结果;
(3)两人各射击一次,中靶至少一次就算完成目的,该事件的对立事件为“两人各射击一次,没有中靶”,利用对立事件的概率公式即可求得结果.
(1)由题意可知 ξ甲~B(5,p1),
∴Dξ甲=5p1(1-p1)=[5/4]⇒p12-p1+[1/4]=0⇒p1=[1/2];
又 [1/p1]•[1/p2]=6,
∴p2=[1/3].
(2)两类情况:
∴共击中3次概率C22( [1/2])2(1-[1/2])0×C21( [1/3])1( [2/3])1+C21( [1/2])1( [1/2])1×C22( [1/3])2( [1/3])0
=[1/6];
共击中4次概率C22( [1/2])2( [1/2])0×C22( [1/3])2( [2/3])0=[1/36].
∴所求概率为 [1/6]+[1/36]=[7/36].
(3)设事件A,B分别表示甲、乙能击中.
∵A,B互相独立,
∴P(
.
A•
.
B )=P(
.
A) P(
点评:
本题考点: n次独立重复试验中恰好发生k次的概率.
考点点评: 这一类型的试题在连续几年的新课程卷都出现了,重点考查了分类讨论的数学思想,体现了《考试说明》所要求的创新意识和实践能力以及运用数学知识解决实际问题的能力.该题仍然是常规题,要求考生耐心细致,审题能力较强,并善于利用材料进行分析说明,属中档题.