在(-1,-∞)任取x1,x2且令x1>x2
f(x1)-f(x2)
=x1^2+2*x1-(x2^2+2*x2)
=x1^2-x2^2+2*x1-2*x2
=(x1+x2)(x1-x2)+2(x1-x2)
=(x1-x2)(x1+x2+2)
因为x1>x2所以x1-x2>0
因为x1
在(-1,-∞)任取x1,x2且令x1>x2
f(x1)-f(x2)
=x1^2+2*x1-(x2^2+2*x2)
=x1^2-x2^2+2*x1-2*x2
=(x1+x2)(x1-x2)+2(x1-x2)
=(x1-x2)(x1+x2+2)
因为x1>x2所以x1-x2>0
因为x1